
GenWorld: An LLM-Ready Urban Simulation Platform with

Empirically-Grounded Synthetic Populations

Gen Li1, Jieyuan Lan1, Pengcheng Xu2, Zongyuan Wu3, Masaki Ogura1, and Tao Feng∗1

1Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashi-Hiroshima, Japan

2School of Civil Engineering, Chang’an University, Xi’an, China
3North China University of Water Resources and Electric Power, China

January 30, 2026

Abstract

Large Language Models (LLMs) are increasingly used
to model agent behavior in simulation, yet existing
platforms lack empirically grounded, city-scale envi-
ronments with building-level spatial resolution. We
present GenWorld, an urban simulation platform
that grounds agent populations in real-world census
and geospatial data at building-level resolution. The
platform provides a structured agent–environment in-
terface with machine-readable decision traces, and
supports offline compilation of LLM signals into deci-
sion priors for city-scale rollout. We instantiateGen-
World in Higashihiroshima, Japan (196,608 syn-
thetic residents), validate demographics against cen-
sus tabulations, and use YJMob100K mobile-phone
data as a commuting-distance diagnostic.
Keywords: LLM agents, Urban simulation, Syn-
thetic population, Building-level assignment, Multi-
agent systems, Knowledge distillation, Empirical val-
idation

1 Introduction

1.1 The Need for Realistic Urban En-
vironments for LLM Agents

Large Language Models (LLMs) have shown strong
capabilities in reasoning, planning, and decision-
making, leading to growing interest in their appli-
cation as autonomous agents [32, 39]. Recent works
show that LLM agents can engage in complex so-
cial interactions [32], solve multi-step reasoning tasks
[42], and collaborate in team environments [15]. As
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these agents move toward real-world use in domains
such as urban planning, transportation management,
and disaster response, a key question is: how can
we deploy and study LLM agents in realistic,
complex environments that mirror real-world
constraints? However, despite these advances, ex-
isting platforms lack empirically grounded, city-scale
environments with building-level spatial resolution
and validated synthetic populations. Our goal is to
provide simulation infrastructure that enables LLM-
driven agent research in realistic urban settings.

Urban environments provide a demanding testbed
for such research. Cities exhibit spatial constraints
where physical distance and infrastructure topology
shape feasible actions, resource competition where
multiple agents must coordinate access to limited fa-
cilities, heterogeneous populations with diverse
demographics and capabilities, and emergent dy-
namics where individual decisions aggregate into
system-level phenomena like traffic congestion or sup-
ply chain disruptions. These characteristics make
urban simulation well-suited for studying situated
intelligence—the ability of agents to make effec-
tive decisions grounded in realistic spatial, social,
and temporal contexts. Beyond agent research, high-
fidelity urban models can support applications such
as flood risk assessment and evacuation planning (via
building-level populations and elevation), and disrup-
tion analyses using social networks and infrastruc-
ture.

Recent efforts to apply LLM agents to urban
contexts fall into two categories, both with impor-
tant limitations. Abstract text-based environ-
ments make decisions without grounded spatial con-
texts [28], while POI-based urban simulations
[32, 33, 38] rely on coarse spatial aggregations (e.g.,
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Figure 1: Multi-scale spatial granularity of GenWorld’s building-level population synthesis in Higashihi-
roshima, Hiroshima, Japan. (A) City-level view showing 196,608 individuals distributed across georeferenced
buildings, validated against census data. (B) District-level view near Hiroshima University, revealing di-
verse building types (residential, commercial, educational) with topographic context and elevation data. (C)
Building-level view of a Youme Town supermarket area with 47 employees spatially assigned to a correspond-
ing commercial land-use parcel; residential buildings are rendered in red with color intensity proportional to
resident counts (darker indicates more residents). (D) Individual-level details showing employee household
origins, occupations, commuting distances, and residential neighborhoods (cho/town). This fine-grained
spatial allocation supports realistic social network formation and environment-aware agent cognition, which
are typically difficult to capture in TAZ-based or POI-list approaches.

TAZ-level zones) rather than building-level assign-
ments, and often lack empirical validation against
census and mobility data. As a result, current plat-
forms may not capture the spatial and social con-
straints that determine what actions are feasible in
real cities.

However, creating such a platform requires over-
coming a fundamental challenge: population re-
alism. Unlike abstract environments where agent
diversity can be arbitrarily defined, realistic urban
simulation demands that synthetic populations accu-
rately reflect the demographic composition, spatial
distribution, and employment patterns of real cities.
Without this foundation, agent behaviors operate in
an unrealistic vacuum, limiting the validity and gen-

eralizability of research findings [25].

1.2 Challenges in Building LLM-
Ready Urban Simulation Plat-
forms

Building a high-fidelity urban simulation platform
suitable for LLM agent research raises several practi-
cal challenges:

Challenge 1: Synthetic Population Generation
and Validation Traditional agent-based models
often rely on simplified or ad-hoc population gen-
eration methods that fail to capture the full het-
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erogeneity of real urban populations [47]. Common
approaches either infer home locations from mobile
phone data (missing non-users) or randomly gener-
ate populations within TAZ zones, along roadways,
or at POI coordinates without georeferenced build-
ing assignments. Recent LLM-driven simulations
[33, 38] have made progress in agent cognition but
inherit these spatial limitations, operating with pop-
ulations assigned to abstract spatial units rather
than specific georeferenced buildings. This coarse
spatial granularity prevents the emergence of realis-
tic neighborhood social networks and limits agents’
ability to reason about fine-grained spatial contexts
(e.g., ”my neighbor two buildings away”). While It-
erative Proportional Fitting (IPF) and related tech-
niques exist for population synthesis [18], existing
pipelines struggle to integrate multi-source geospa-
tial data (census, land use, building footprints), im-
plement building-level spatial assignment algorithms
that match realistic commuting patterns, and vali-
date against ground-truth data such as census statis-
tics and mobile phone records. This limitation is par-
ticularly problematic for LLM agents, whose reason-
ing and planning depend on fine-grained, relational,
and language-expressible spatial contexts.

Challenge 2: Computational Scalability of
LLM-Driven Agents LLMs are computationally
expensive. A single inference call can take hundreds
of milliseconds and cost significant resources. In a
city-scale simulation with hundreds of thousands of
agents, directly querying LLMs for each agent’s deci-
sion at each time step is computationally expensive in
practice. For instance, simulating 200,000 agents over
a 24-hour period with 15-minute time steps would re-
quire 19.2 million LLM calls—even under optimistic
latency assumptions, this is a substantial computa-
tional burden. This bottleneck has limited the use of
LLM agents in large-scale, realistic simulations, and
has often constrained evaluation to small-scale sce-
narios that may not reveal important emergent phe-
nomena.

Challenge 3: Integration and Accessibility for
AI Researchers Most existing urban simulation
platforms were designed for domain experts in trans-
portation or urban planning, not for AI researchers.
They often require deep knowledge of urban modeling
conventions and do not provide LLM-native interac-
tion paradigms such as natural language observation
spaces and JSON-structured action interfaces. This
creates a barrier to entry for AI researchers seeking
to deploy their agents in realistic urban contexts. We
survey these platforms in Section 2.2.

1.3 Contributions

To address these challenges, we present GenWorld,
an LLM-ready urban simulation platform grounded
in empirical data and building-level spatial represen-
tation (Figure 1). This paper makes the following
contributions:

1. Empirically-Grounded Urban World at
Building Level: We develop a building-level
population synthesis and grounding pipeline val-
idated against multi-source data, generating
196,608 individuals with tract-level census totals
enforced as hard constraints (reported for com-
pleteness) and distributional agreement on de-
mographic variables not enforced as exact con-
straints (e.g., male-ratio MAE≈ 0.016, mean age
KS ≈ 0.030). We ground households to georef-
erenced buildings and assign schools and work-
places through rule-based and quota-constrained
spatial allocation. We use anonymized mobile
phone mobility data (YJMob100K) [40] as a
commuting-distance diagnostic, with appropri-
ate limitations due to anonymization and man-
ual registration. On top of this population foun-
dation, we construct an urban environment in-
tegrating POIs, roads, elevation, and building-
level spatial representation, enabling situated
decision-making under physical and infrastruc-
ture constraints.

2. City-Scale LLM-Agent Simulation via
Knowledge Distillation: We develop a distil-
lation pipeline that estimates context-dependent
teacher decision distributions through repeated
sampling and compiles them into efficient prob-
abilistic policies (lookup tables) for simulation-
time inference. This design shifts LLM calls
out of the simulation loop and can yield large
speedups in typical settings, enabling large-scale
rollouts in our reference instantiation. Un-
like standard policy distillation in reinforcement
learning, our target is language-conditioned,
context-dependent decision distributions under
a fixed, executable candidate set.

3. LLM-Ready Integration Interface: We pro-
vide a standardized tool-based interface that
bridges traditional urban simulation with mod-
ern LLM agents, exposing natural language ob-
servation spaces and structured action specifica-
tions. This LLM-native interaction layer lowers
the barrier for AI researchers to deploy and study
LLM agents in realistic urban settings.
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1.4 Paper Organization

The remainder of this paper is organized as follows.
Section 2 reviews related work in LLM agent simu-
lation, urban simulation platforms, synthetic popu-
lation generation, and distillation for agent simula-
tion. Section 3 describes the LLM agent interface.
Section 4 presents the distillation pipeline for city-
scale simulation. Section 5 presents the empirically
grounded urban world construction, including data
sources, population synthesis and spatial grounding,
and multi-source validation. Section 6 introduces the
platform architecture and simulation engine. Sec-
tion 7 presents demonstration results and scalability
analysis. Finally, Sections 8 and 9 discuss limitations
and conclude.

2 Related Work

Table 1 provides an overview of how GenWorld com-
pares to existing platforms across three categories:
LLM agent simulation platforms, LLM-based urban
mobility platforms, and population synthesis plat-
forms. We detail these comparisons in the following
subsections.

2.1 LLM Agents and Simulation Plat-
forms

The emergence of Large Language Models has driven
rapid progress in autonomous agent systems. Recent
works demonstrate LLM agents across a range of set-
tings, from social simulation [32] to tool use [34] and
multi-agent collaboration [15]. This progress moti-
vates the need for realistic simulation environments
that can support LLM agent research under real-
world constraints.
Existing Agent Platforms. Existing platforms
and benchmarks span multiple levels of realism.
Abstract environments (e.g.,

GridWorld/TextWorld-style tasks) [28] are use-
ful for isolating reasoning and planning, but they
abstract away geography, resource constraints, and
social interactions.
Task-specific platforms such as SWE-bench [19]

(software engineering) and WebArena [46] (web nav-
igation) provide grounded objectives and measurable
success criteria, but they typically focus on single-
agent, non-spatial settings.
Social simulation platforms such as Genera-

tive Agents [32] explore emergent interactions, yet
the environments are simplified and the scale (e.g.,
25 agents) is insufficient for studying city-scale phe-
nomena and computational scalability. CityBench [8]

evaluates LLM world-modeling capabilities for urban
tasks but does not provide building-level population
grounding.

LLM Agents in Transportation and Mobil-
ity. Beyond interactive simulacra, LLMs have
been explored as simulated economic agents [17]
and integrated into mobility and transportation set-
tings. LLMob [38] uses self-consistency and retrieval-
augmented strategies for individual mobility genera-
tion with GPS-based validation. Liu et al. [27] outline
an LLM-agent-based transportation modeling frame-
work with a small proof-of-concept. TrajLLM [20]
combines LLM-based persona generation with hybrid
destination choice (LLM + physical models), but fo-
cuses on POI-level trajectories. GATSim [26] and
MobileCity [43] target larger-scale mobility simula-
tion; MobileCity achieves efficiency partly by dis-
abling LLM modules at scale, trading behavioral fi-
delity for speed. OpenCity [41] proposes a “group-
and-distill” prompt optimization strategy that clus-
ters agents with similar attributes and distills shared
reasoning patterns, achieving 600× acceleration in
simulation time; however, it focuses on prompt-level
efficiency rather than building-level spatial ground-
ing. Overall, these efforts primarily emphasize indi-
vidual trajectory generation or engineering efficiency.
They often do not provide city-scale population syn-
thesis with jointly validated demographics and spatial
assignments (e.g., building-level placement) or thor-
ough empirical validation.

Existing platforms often do not jointly provide
realistic population foundations supported by em-
pirical data, spatial complexity with infrastructure
constraints, computational scalability to city-scale
(100,000+ agents), and LLM-compatible interfaces.
GenWorld provides an empirically grounded urban
environment with 200,000-agent scalability based on
data from Higashihiroshima, Hiroshima, Japan.

2.2 Urban Simulation Platforms

Agent-based modeling has a rich history in urban and
transportation research [6, 23], with several estab-
lished platforms:

Traditional ABM Platforms. GAMA [35], MA-
SON [29], and NetLogo [37] are widely used for
urban simulation. These platforms provide powerful
modeling capabilities but were designed for domain
experts rather than AI researchers, and they do not
provide standardized LLM integration interfaces or
natural language observation spaces.

Transportation Simulation Tools. MATSim [16],
SUMO [22], and similar tools focus on traffic simu-
lation with detailed traffic modeling. However, they
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Table 1: Comparison of GenWorld with Related Platforms

Platform Population Empirical Scale Real Spatial Social

Realism Validation (Agents) Geography Detail Networks

LLM Agent Simulation Platforms

GridWorld/TextWorld Low No < 100 No No No

Generative Agents [32] Low No < 100 No Limited Limited

WebArena [46] N/A N/A Individual No No No

LLM-Based Urban Mobility Platforms

LLM-ABM Framework [27] Low No < 100 No Low No

LLMob [38] Medium GPS Individual Yes POI-level No

TrajLLM [20] Medium Qualitative < 100 No POI-level No

MobAgent [24] Medium Survey Individual Yes POI-level No

GATSim [26] Medium No 1K–10K No Medium Limited

MobileCity [43] Medium No 1K–10K No Medium Limited

OpenCity [41] Low GPS 1K–10K Yes POI-level No

Population Synthesis Platforms

Jiang et al. [18] High Census 100K+ Yes Road-based Multi-layer

Pseudo-PFLOW [21] High Census 100K+ Yes Building No

GenWorld (Ours) High Multi-source 100K+ Yes Building Multi-layer†

† Social networks are generated from spatial co-location but not used in current experiments.

typically use simplified behavioral models and do not
incorporate the cognitive realism enabled by LLM-
driven agents.
Commercial Platforms. AnyLogic, Citilabs, and
other commercial tools offer sophisticated urban
modeling but are closed-source, expensive, and not
designed for AI research integration.
Recent open-source efforts such as VoxCity [9]

provide seamless 3D urban environment generation,
while Biljecki and Chow [3] establish global building
morphology indicators for standardized urban anal-
ysis. However, existing platforms were not designed
with LLM agents in mind. GenWorld aims to ad-
dress these gaps by providing natural language obser-
vation spaces, flexible action specifications, validated
population foundations, and computational scalabil-
ity through knowledge distillation.

2.3 Synthetic Population Generation

Generating realistic synthetic populations is funda-
mental to valid agent-based modeling [25].
Population Synthesis Methods. Iterative Pro-
portional Fitting (IPF) [5] and its variants are
commonly used methods, adjusting cell weights to
match marginal distributions from census data. Be-
yond IPF, prior work also explores alternative formu-
lations such as combinatorial optimization, Bayesian
approaches, and deep generative models (DGMs).
While DGMs can generate diverse populations be-

yond observed samples, they often struggle to balance
sampling zeros (valid but unobserved combinations)
with structural zeros (implausible combinations) [25].
Recent work explores LLM-based approaches: Li et
al. [24] proposed MobAgent, using LLMs to extract
fine-grained mobility patterns from individual pro-
files through self-evaluation and recursive reasoning,
validated on 0.2M travel surveys. Ma et al. [30] de-
veloped a foundation model using LLMs for semantic
enrichment of GPS trajectories, demonstrating trans-
fer learning across regions (LA to Egypt) for mobility
pattern synthesis. While these LLM-based methods
have been explored for individual trajectory genera-
tion, they focus on personal mobility modeling rather
than city-scale population synthesis with validated
demographic distributions and spatial assignments.

Spatial Assignment and Social Networks. As-
signing synthetic individuals to geographic locations
is important for spatial realism. Common ap-
proaches include: gravity models [1] for work-
place assignment, distance-based allocation for
household placement, and constraint satisfaction
for student-to-school assignment. Jiang et al. [18]
developed a large-scale method generating 23 mil-
lion geographically-explicit individuals for New York
Metro Area with multi-layer social networks (house-
hold, work, school, daycare) emergent from spatial
co-location, highlighting the importance of social net-
works for urban simulations. Kashiyama et al. [21]
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developed Pseudo-PFLOW, an agent-based frame-
work that downscales census data to building-level
assignments using Markov chain models for activ-
ity generation, covering Japan’s 130 million pop-
ulation. While achieving strong validation results
(R2=0.61–0.98 for population distribution), these ap-
proaches rely on traditional statistical models rather
than LLM-driven behavioral realism and lack inte-
gration with modern LLM agent frameworks.
Validation Approaches. Traditional validation
relies primarily on census data comparison. Re-
cent work has begun incorporating mobile phone
data [40] for validating commuting patterns, build-
ing on foundational studies of human mobility pat-
terns [11, 31, 13]. Ma et al. [30] demonstrated multi-
level validation through traffic simulation, achieving
MAPE < 6% for traffic volumes. However, system-
atic validation combining demographic distributions,
spatial assignments, and mobility patterns against
real-world data remains rare.
Most synthetic population studies focus on de-

mographic accuracy but neglect spatial validation
with real mobility data, social network construction,
daily activity schedules, and integration with LLM
agent frameworks. GenWorld provides an end-to-end
pipeline that covers these aspects.

2.4 Knowledge Distillation for Agent
Simulation

Knowledge distillation [14] has been widely applied
in machine learning to compress large models into
efficient ones. Recent applications include:
Beyond model compression, recent work explores

abstraction and software architecture to scale LLM-
agent simulations. Chopra et al. [4] introduce LLM
archetypes, where many agents share an archetypal
LLM policy to increase throughput at scale, but this
can reduce individual-level heterogeneity and online
adaptivity. SocioVerse [45] targets population-scale
social simulation by aligning LLM agents to a large
pool of real users and standardizing simulation pro-
cedures; however, it relies on large external datasets
and its alignment pipeline can be costly to reproduce
or transfer. For influence diffusion in social networks,
LLM-AIDSim [44] integrates LLM-enhanced agents
into classical diffusion simulation pipelines, but the
approach is task-specific and may not directly gen-
eralize to open-ended urban decision spaces. From a
systems perspective, SALLMA [2] proposes a layered
multi-agent architecture with orchestration and con-
tainerized deployment; while improving modularity
and scalability, it does not inherently remove per-
decision LLM inference costs and can require sub-

stantial engineering infrastructure.
LLM Distillation. Distilling large language models
into smaller, faster models while maintaining perfor-
mance is an active area of research. However, most
work focuses on natural language tasks, not agent
decision-making in complex environments.
Agent Behavior Cloning. Imitation learning and
behavior cloning train efficient policies from expert
demonstrations. GenWorld extends this paradigm by
using LLMs as ”expert demonstrators” to generate
training data for efficient student models.

We apply knowledge distillation to enable city-scale
LLM agent simulation. Our approach estimates the
teacher’s discrete decision distribution via repeated
Monte Carlo sampling and compiles the resulting
probabilistic policy into efficient lookup tables, shift-
ing expensive inference out of the simulation loop and
enabling large speedups in typical settings for large-
scale simulations.

As summarized in Table 1, GenWorld com-
bines building-level population grounding with
census-validated demographics, city-scale scala-
bility via offline knowledge distillation (200,000+
agents), multi-layer social networks derived from
spatial co-location, and schema-validated LLM-
ready interfaces that produce machine-readable be-
havioral traces in a real-city instantiation.

3 Agent Interface

GenWorld exposes a lightweight decision interface for
LLM agents and records each decision as a struc-
tured log entry. This interface is designed to en-
able post-hoc qualitative inspection of agent rou-
tines and failure modes and provide machine-readable
decision traces for offline distillation. Concretely,
each decision consumes a binned observation õi,t
and a finite candidate set Ai,t, and produces a
schema-conformant JSON action, a validator bit,
and (if needed) a deterministic fallback outcome, all
recorded as a log entry.

Observation and Action Schema At each de-
cision point for agent i at time t, the simulator con-
structs a decision context from the city state xt (time,
environment signals, and infrastructure states), a
synthesized persona ui produced by the population
instantiation pipeline (core demographics and spa-
tial anchors such as home/work/school when avail-
able, with optional household and social features),
and optionally short-term memory summaries mi,t

distilled from recent logs. This context is denoted as
ci,t = (xt, ui,mi,t). Given a decision query qt, the
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environment deterministically produces a binned ob-
servation and a finite candidate action set:

õi,t = ϕ(ci,t; qt),

Ai,t = κ(qt, õi,t).

The function ϕ is implemented as a deterministic en-
coder stack that includes coarse binning and query-
specific formatting. A prompt composer g(õi,t, qt) as-
sembles a stable template with question-specific slots.
The agent then outputs a structured JSON action
ai,t ∈ Ai,t following a fixed schema (e.g., activity
type). A deterministic validator v(õi,t, ai,t) ∈ {0, 1}
enforces schema and feasibility constraints; invalid
actions trigger a deterministic safe fallback before
execution, and all artifacts are logged. Figure 2
illustrates a representative query where raw per-
sona/state fields are deterministically mapped into
coarse bins before being passed to the LLM. Figure 3
summarizes how the resulting structured outputs are
executed into full-day trajectories by lightweight de-
terministic rules. In this implementation, persona
slices are intentionally sparse, while richer prefer-
ence/trait slices can be added as optional extensions
or treated as latent variables depending on the target
application.

Two-Tier Decision Queries for Long-Horizon
Rollout Decision-making is separated into two
structured outputs with different time scales.
ActivityPreference is a per-agent, persona-
conditioned preference profile that is initialized once
(and optionally refreshed) and defines propensities
over activity types for each high-level intention.
DayPlan is a per-day (or per-checkpoint) plan that
specifies a small mixture of intention-chain templates
together with discretized POI-selection weights. The
plan sampling index is denoted by k (day-start or
checkpoint), which is much sparser than the simu-
lator time step t used for execution, and the city
state at plan sampling time is written as xk. The
intention space is fixed to {home, duty, leisure,
maintenance}.
This two-tier abstraction is grounded in time-

geography theory [12]: daily mobility is con-
strained by capability (physical limits), coupling
(coordination with others), and authority (in-
stitutional schedules). Our intention hierar-
chy (home/duty/leisure/maintenance) captures these
canonical constraint classes, while the activity vocab-
ulary covers the primary purposes observed in na-
tional time-use surveys. The fixed ontology trades
open-ended expressiveness for tractability and re-
peatability; extending the vocabulary is straightfor-
ward within the same interface contract.

Critically, the day-level query is not conditioned
on a single intention; instead, the simulator provides
a small, day-type-specific candidate set of intention-
chain templates (e.g., weekday vs. weekend vari-
ants) and includes this candidate set as part of the
binned context. During rollout, agents sample a
DayPlan at day start, and the simulator consumes
it through a lightweight executor (as shown in Fig-
ure 3) to produce an explicit trajectory of simu-
lator actions. Concretely, an intention-chain tem-
plate is sampled from the day-type-specific candi-
date set, expanded into activity types by sampling
ActivityPreference, and grounded into concrete
destinations via a fixed activity-to-place ontology and
feasibility checks. Overrides may be requested by
the agent or forced by the simulator when feasibility
checks fail or exogenous events invalidate the plan.
In both cases, a deterministic return-home fallback is
applied and the agent stays at home until the next
plan sampling time (day-start or checkpoint). Sec-
tion 4 describes how decision traces are collected un-
der binned contexts and compiled into scalable stu-
dent policies.

Formal Contract Summary The formal contract
(Figure 2) is summarized as follows. The simulator
deterministically maps raw persona and state fields
into coarse bins via encoders bu and bx:

I = {home, duty, leisure, maintenance},
ũi = bu(ui), x̃k = bx(xk),

τ ∈ {weekday, weekend},
Cτ ⊆ I∗.

where τ is a coarse day-type label and Cτ is a small
predefined candidate set of intention-chain templates.
The per-agent query defines a conditional categorical
distribution over activity types given intention z:

Ai(z) := ActivityPreferencei(z),

Ai(z) = {(a, p(a | z))}a∈Az , z ∈ I,

a ∈ Az,
∑
a∈Az

p(a | z) = 1,

where Az is a small predefined set of activity types
allowed under intention z (Appendix A.3). The per-
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Figure 2: Query-conditioned prompt construction for our structured decision interface. Raw persona/state
fields are deterministically mapped into coarse bins and are not included verbatim in the prompt. The figure
schematically illustrates prompt variants used in this instantiation: a per-agent ActivityPreference query
over a fixed candidate set under a given intention, and day-level prompts that score POI-selection preferences
over near/pref/cost weights and intention-chain templates over a predefined chain candidate set. In this
default instantiation, POI-weight scoring and intention-chain scoring are issued jointly as a single DayPlan

query, but they can also be queried separately. Input features are represented using coarse discrete bins,
while candidate scores returned by the teacher are integers in [0, 10] over a predefined option set. Section 4
describes how these structured traces are aggregated and compiled for scalable rollout.

Figure 3: Plan-to-trajectory execution with a two-
tier decision structure. ActivityPreference pro-
vides persona-conditioned activity propensities, while
DayPlan specifies intention-chain templates and POI-
selection weights. A lightweight executor produces
explicit trajectories through fixed ontologies and fea-
sibility checks.

day (or per-checkpoint) query returns:

Di,k = DayPlani,k(x̃k, ũi, Cτ ),
Di,k = (ri,k, Ci,k, wi,k),

Ci,k = {(cj , πj)}|Cτ |
j=1,

ri,k ∈ {0, 1},
|Cτ |∑
j=1

πj = 1,

cj ∈ Cτ ⊆ I∗,
wi,k(z) = (ℓneari,k (z), ℓprefi,k (z), ℓcosti,k (z)),

ℓ∗i,k(z) ∈ {0, . . . , 10}, z ∈ I,

where Cτ is a small predefined candidate set
of intention-chain templates (in our instantiation,
|Cτ | = 6 per day type). Here ri,k is an override re-
quest flag, each cj is an intention-chain template, and
wi,k(z) specifies discretized POI-selection weights for
intention z. Here k denotes the plan sampling index
(day-start or checkpoint), which is much sparser than
the execution time step. Overrides may also be forced
by the simulator when feasibility checks fail; in either
case, a deterministic return-home fallback is applied.

Tool-Oriented Interface, Robustness, and
Traceability The interface is realized as stable
prompt templates with strict JSON schemas that
are validated and logged by the simulator, and
can be wrapped by standard tool-calling middleware
when needed. A fixed, query-conditioned observation
schema, a discrete and bounded action space with
strict validation, and deterministic execution seman-
tics are enforced. At city scale, even rare formatting
or parsing failures can derail long simulations. LLM
decisions are therefore constrained to a small discrete
action set with a fixed schema, and strict validation
and deterministic fallback rules are enforced in the
decision logger. This design makes decision traces di-
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rectly machine-readable and suitable for downstream
analysis and policy compilation (Section 4).

4 Distillation and Scaling

To scale LLM-driven decision-making to city-scale
simulations, the teacher’s stochastic decision behav-
ior is distilled into empirical score vectors and sam-
pling distributions under discretized contexts by re-
peatedly querying the LLM under identical context
keys and aggregating its scores over a fixed candi-
date set (e.g., intention-chain templates or intention-
conditioned activity templates). Because the inter-
face bins raw contexts into discrete keys and restricts
each query to a finite candidate set with strict val-
idation, the teacher can be repeatedly queried un-
der identical keys and its scores can be aggregated.
The key idea is to shift expensive inference out of
the simulation loop: a one-time offline cost is paid to
estimate these distributions, and the resulting com-
piled tables are executed via amortized constant-time
lookup and sampling given bounded candidate sets
per query, with respect to the number of agents and
decision steps.

In a micro-benchmark on the compiled
ActivityPreference table, Python lookup achieves
1.85M queries/s (0.54µs per query) over 200,000
randomized context keys. While absolute throughput
depends on hardware and implementation details,
this benchmark highlights the potential for large
speedups relative to online LLM inference in typical
settings. End-to-end wall-clock time per simulator
step also includes environment updates, routing, and
execution overheads. Prompt templates used for
distillation are listed in Appendix A.4.

Action Primitives and Context Discretiza-
tion Repeated sampling requires that the teacher
be queried under identical contexts. Following the
interface contract in Section 3, raw persona and
state are discretized into bins (e.g., ũi = bu(ui),
x̃ = bx(x)) and each decision query qt is treated
as defining its own finite action space. Concretely,
for each query type qt (e.g., ActivityPreference

or DayPlan), an executable discrete action set Aqt

is defined that matches the simulator’s structured
schema and validation rules. A finite context key
s = (ũi, x̃, qt, τ) is then formed, where τ indexes
the day-type-specific candidate template set used by
DayPlan. This makes repeated offline teacher ag-
gregation well-defined and enables compilation into
amortized constant-time lookup policies. The day-
type indicator τ is included explicitly because the

DayPlan candidate set differs across day types (e.g.,
weekday vs. weekend).

Computational Motivation At city scale, a di-
rect teacher-driven simulation requires O(NT ) LLM
calls, where N is the number of agents and T is the
number of decision points per simulated day. For ex-
ample, N = 200,000 agents with 15-minute time steps
over 24 hours yields T = 96 and thus 1.92× 107 calls
for a single day, which is computationally expensive
in practice. Distillation reduces simulation-time in-
ference to amortized constant-time table lookup and
sampling with respect to the number of agents and
decision steps.

Repeated Teacher Query Aggregation For a
fixed candidate set Aqt and context key s, K teacher
score vectors {r(k)(·)}Kk=1 are sampled, where each
query returns an integer score r(k)(a) ∈ [0, 10] for
every candidate a ∈ Aqt . The mean score and con-
sistency statistics are aggregated:

µ(a | s) = 1

K

K∑
k=1

r(k)(a), (1)

σ(a | s) =

√√√√K−1

K∑
k=1

(
r(k)(a)− µ(a | s)

)2
. (2)

The aggregated mean scores are normalized across
candidates into a categorical sampling distribution
π(· | s), which is used for simulation-time sampling.
Since scores are in [0, 10], an executable sampling
distribution is constructed by normalizing the mean
scores:

π(a | s) = Normalize (µ(a | s)) , a ∈ Aqt . (3)

The score variability σ(a | s) is reported to quantify
teacher consistency across repeated queries (and to
diagnose context regions with high variability).

Policy Compilation and Simulation-Time In-
ference The aggregated scores and sampling dis-
tributions (e.g., µ(· | s) and π(· | s)) are compiled
into per-query lookup tables keyed by discretized con-
text features (persona bins, time bins, coarse loca-
tion types, scenario indicators, and day-type indica-
tors). During simulation, agents sample an intention-
chain template or activity template according to the
distilled distribution rather than querying the LLM,
and execute the sampled schema through the same
validator/executor as the teacher outputs. Scoring
and sampling over intention-chain templates enables
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Figure 4: Teacher preference scores (0–10) for ActivityPreference across persona categories (rows) and
candidate activity types (columns), shown separately for maintenance (left) and leisure (right). The scores
define the simulation-time sampling distribution used by the compiled policy.

(a) Weekday intention-chain template preference. (b) Weekend intention-chain template preference.

Figure 5: Distilled teacher scores for DayPlan intention-chain templates, shown separately for weekday and
weekend candidate sets.

long-horizon diversity while keeping the execution in-
terface lightweight. This compilation separates two
concerns:

• Teacher inference (offline): generate multi-
ple samples per context to estimate µ(· | s) (and
σ(· | s)), then derive π(· | s).

• Agent rollout (online): execute a lightweight
stochastic decision rule by table lookup and sam-
pling.

Context Design and Coverage To make compi-
lation feasible, contexts are discretized into a finite
key space (e.g., persona bins, coarse location types,
and time bins) and representative contexts are sam-
pled according to the instantiated population dis-

tribution. This allows the offline sampling budget
to be allocated where it matters most while keep-
ing simulation-time inference amortized constant-
time with respect to the number of agents and de-
cision steps. This discretization trades off fidelity for
tractability: behavior matching depends on context
key design and coverage, and unseen keys may require
backing off to coarser keys or a conservative default.

5 Empirical Grounding of the
Urban World

Our reference instantiation integrates multi-source
empirical datasets, including official census statistics
and administrative boundaries, building footprints
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and POIs, parcel-level land-use labels, a complete
road network with elevation, and anonymized mo-
bility data for commuting diagnostics. These inputs
provide constraints for population synthesis and spa-
tial grounding, and also provide independent signals
for validation.
Detailed data sources and processing steps are pro-

vided in Appendix A.2 (Table 2).

5.1 Population and Environment
Foundation

This section describes the empirically-grounded pop-
ulation and environment foundation used in our Hi-
gashihiroshima reference instantiation, grounded in
publicly available census tabulations and geospatial
layers (buildings, land use parcels, school districts,
POIs, and roads), synthesizing 196,608 individuals
across 90,093 households. The formulation combines
demographic micro-synthesis under tract-level census
constraints with spatial grounding of home, school,
and work locations under capacity and distance con-
straints.

5.1.1 Tract-Level Micro-Synthesis and At-
tribute Assignment

For each tract t, the total population Nt is treated as
a hard constraint and an age–gender joint distribu-
tion is estimated whose marginals match census age
counts and gender totals. A 2D IPF procedure is
adopted on an age× gender matrix M (t):

M
(k+ 1

2 )
a,g = M (k)

a,g ·
nt,a∑
g′ M

(k)
a,g′

(4)

M (k+1)
a,g = M

(k+ 1
2 )

a,g · nt,g∑
a′ M

(k+ 1
2 )

a′,g

(5)

where nt,a is the census count of age bin a in
tract t, and nt,g is the census total of gender g ∈
{male, female}. M (t) is initialized with a strictly pos-
itive prior (e.g., uniform or tract-independent) and
Eq. (5) is iterated until marginal errors fall below ϵ
or for a fixed number of rounds. Individuals are then
sampled from the normalized joint distribution, and
a concrete integer age is sampled uniformly within
the selected age bin.
Given the sampled individuals, households are

formed using the tract household-size histogram
(1,2,3,4,5,6+) with a lightweight plausibility heuristic
(e.g., capping household size at 6). The census house-
hold count target Ht is enforced and household sizes
are sampled to match the tract histogram. Employ-
ment status and occupation categories are then as-
signed for working-age individuals so that tract-level

employed totals and occupational marginals match
the census. Let It be individuals in tract t, and
Wt ⊂ It be working-age individuals. Denote the
census employed target as Et and the census occu-
pation target counts as Ct,o for occupation category
o ∈ O. Let E′

t = min(Et, |Wt|) and let C ′
t,o be ad-

justed occupation targets derived from {Ct,o}o∈O by
padding/truncation so that

∑
o∈O C ′

t,o = E′
t. The

following constraints are enforced:∑
i∈Wt

I[employedi] = E′
t (6)

∑
i∈Wt

I[employedi ∧ occi = o] = C ′
t,o, ∀o ∈ O (7)

Eq. (6)–(7) are realized via seeded sampling: an em-
ployed subset of size E′

t is drawn and an occupation
multiset with counts C ′

t,o is assigned, followed by a
tract-seeded random permutation.

5.1.2 Spatial Grounding of Home, School,
and Work

Households are assigned to residential buildings
within each tract using a capacity-aware alloca-
tion; students are assigned to schools using dis-
trict polygons when available with nearest-school
fallback; university assignment uses a distance-
based stochastic choice with weights proportional to
1/d2. For workplace allocation, employed individ-
uals are mapped to landuse parcels (not building
IDs) using an occupation-conditioned landuse prior
(occupation→landuse mapping with ratios ro,l) to-
gether with a maximum commute-distance constraint
dmax.

Capacity inference by area (quotas). For occupa-
tion o, let total employees be No, eligible landuse
categories be Lo, and the configured landuse ratio be
ro,l for l ∈ Lo with

∑
l∈Lo

ro,l = 1. For each landuse
parcel j of category l with area Aj , an occupation-
specific quota is defined:

qj,o =
No ro,l Aj∑

k∈Pl
Ak

, j ∈ Pl, l ∈ Lo (8)

where Pl is the set of parcels with landuse category
l. Fractional quotas are converted into integer capac-
ities q̂j,o (e.g., via floor with remainder redistribution
or stochastic rounding) to preserve total capacity per
occupation.

Gravity-based allocation. We employ a gravity
model to assign workplaces, balancing employment
opportunities with distance decay. Let dij be the
haversine distance between employed individual i’s
home and landuse parcel j. The probability Pij of

11



individual i choosing workplace j is proportional to
the parcel’s destination attractiveness (capacity) and
inversely proportional to commute distance:

Pij ∝ Aα
j · f(dij) ·Mij (9)

where Aj is the capacity (attractiveness) of parcel
j, f(d) = d−β is the distance decay function with
friction parameter β, and Mij is a binary mask en-
forcing occupation compatibility (Mij = 1 if parcel
j supports individual i’s occupation oi and j has re-
maining capacity, else 0). We set α = 1 and calibrate
β against empirical mobility data. The assignment is
performed stochastically:

j∗ ∼ Categorical({Pij}j) (10)

This probabilistic approach allows for a realistic dis-
tribution of commute distances, including long-tail
commutes, unlike strict distance minimization.

5.1.3 Derived Social Networks

Multi-layer networks are a deterministic byproduct
of the assigned home/school/work locations and in-
stitutional membership. While not used by the agent
interface or the experiments in this paper, they are re-
tained as an optional artifact for internal consistency
checks and future extensions:

G = (V,E), (11)

E = Ehousehold ∪ Ehome ∪ Eschool ∪ Ework

∪ Eneighborhood (12)

where edges represent interaction opportunities in-
duced by shared households, shared residential build-
ings, shared schools, shared workplace landuse, and
neighborhood proximity. To keep graphs sparse at
scale, degrees are capped or edges are sampled within
large buildings/institutions and edges can optionally
be weighted by co-location frequency.

5.1.4 Urban Environment Integration

The platform integrates multiple layers of urban in-
frastructure:

E = {P,R,B,A} (13)

where:

• P: POI catalog with categorical attributes P =
{(pi, typei, capacityi, hoursi)}

• R: Road network graph R = (Vr, Er, wr) with
edge weights (distance, speed, capacity)

• B: Building set with spatial footprints and land
use B = {(bi, geomi, usei, Ci)}

• A: Administrative hierarchy (census blocks, dis-
tricts, city) for spatial aggregation

When explicit capacities, opening hours, or road-
capacity attributes are missing in the source layers,
the implementation uses conservative defaults or sim-
ple rule-based proxies (e.g., POI-type-specific heuris-
tics and road-class-based speed/capacity settings) to
support feasibility checks.

5.2 Activity Generation and Tempo-
ral Grounding

We implement a hybrid generative mechanism to
ensure both behavioral realism and temporal fidelity.
While the sequence and semantics of daily activ-
ities (e.g., the decision to visit a gym after work) are
generated by the LLM-distilled policy to capture het-
erogeneous preferences, the temporal attributes
(start time and duration) are grounded in the Na-
tional Time Use Survey. Specifically, once an
activity type is selected by the agent, its timing is
sampled from the corresponding empirical distribu-
tion (e.g., ’Sports’ duration distribution for a ’Gym’
visit), thereby preventing unrealistic hallucinations
common in pure LLM scheduling.

We utilize the action initialization probabil-
ity (derived from activity start-time statistics) rather
than the raw action participation rate (occu-
pancy). Using raw occupancy rates as sampling prob-
abilities—a common pitfall—would incorrectly bias
the duration of activities. Our pipeline explicitly
separates the decision to start an activity from the
duration of the activity, ensuring that the generated
temporal dynamics mathematically align with the ag-
gregate census observations.

5.3 Population Distribution Valida-
tion

We validate our synthetic population against census
data at the tract level to ensure demographic accu-
racy.

5.3.1 Census Data Validation

Our population synthesis method generates 196,608
individuals across 90,093 households in Higashihi-
roshima. We validate the synthetic population
against 2020 Japanese Census tabulations at census-
tract granularity across multiple demographic dimen-
sions.
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For household size statistics, the census reports
general household counts, while some tracts include
non-household residents (e.g., dormitories or institu-
tional facilities). We therefore evaluate household
size distributions on tracts where total population
equals general-household persons (see Appendix A for
details).

Distributional Fit Metrics We distinguish hard
constraints from soft-fit metrics. Tract-level total
population is constrained to match census totals ex-
actly, yielding very close agreement with census to-
tals by construction. We therefore emphasize distri-
butional similarity for variables not enforced as exact
constraints.

After restricting census tabulations to the instan-
tiated study area, we obtain 198 finest-resolution
census units (HYOSYO=2/4). We evaluate de-
mographic fit on 185 tracts; 13 census units with
zero population and zero households (e.g., industrial
parks) are excluded. Gender ratios are well matched
(male ratio MAE < 0.02). Age distributions achieve
mean L1 = 0.1229 (median 0.10, max 0.31), mean KS
= 0.0299 (max 0.12), and mean JS = 0.0047 (max
0.02), with 95% of tracts having L1 < 0.20. House-
hold size distributions achieve mean L1 = 0.0547,
mean KS = 0.0269, and mean JS = 0.0075. Em-
ployment counts (15+) show high tract-level agree-
ment (R2 > 0.99). Occupation distributions achieve
mean L1 = 0.1945, mean KS = 0.0972, and mean JS
= 0.0382. The tight distribution of per-tract errors
reflects the effectiveness of the IPF constraints.

5.3.2 Spatial Distribution Validation

Unlike TAZ-based methods that assign residents to
abstract zones, our building-level approach assigns
households to specific georeferenced buildings under
tract-level and capacity constraints. Because build-
ing footprints and land-use labels may be incomplete
in a small number of tracts (e.g., industrial parks),
we report explicit assignment diagnostics rather than
silently forcing fallback placements.

In our reference instantiation, 89,933 out of 89,988
tract-level census target households are successfully
assigned to residential buildings. The remaining 55
target households belong to tracts with zero residen-
tial supply under our mixed residential-identification
rules (e.g., industrial/logistics areas). We addition-
ally report unmapped synthetic households due to
definition mismatch between census targets and the
sampled household list.

5.3.3 School Assignment Validation

School assignment uses building-level home locations.
Elementary and junior-high students are assigned by
school-district polygons with nearest-school fallback.
High-school assignment is nearest-school based with
limited randomness among candidates within a dis-
tance threshold, and university assignment uses a
gravity-style stochastic choice with weights propor-
tional to 1/d2.

In our reference instantiation, 43,260 out of 43,557
students are assigned to a school (99.32%); 53 stu-
dents are flagged as no location due to missing
home geolocation (caused by a small number of
households not mapped to residential buildings under
supply constraints). We report the assigned school
enrollment distribution in Figure A2.

5.4 Mobility Pattern Validation

We compare commuting statistics against
anonymized mobile phone mobility data from
Yahoo Japan Mobility (YJMob100K) [40]. The
dataset discretizes location pings into 500m × 500m
grid cells and timestamps into 30-minute bins, with
the metropolitan area undisclosed for privacy. For
our case study, we extract a subregion consistent
with the Higashihiroshima area by registering the
released mesh grid via manual rigid alignment. The
registration uses coastline landmarks and major
terrain features as control points, with an estimated
alignment error of <500m (one grid cell). A sen-
sitivity analysis indicates that commute distance
distributions are robust to registration errors within
this range. The registration script and control point
coordinates are provided in our repository (data_
prepare/step3_assign/yjm_registration.py);
the comparison is treated as a commuting-distance
diagnostic rather than an OD-flow benchmark.

We infer each user’s home mesh from nighttime
records and work mesh from daytime records (fixed
time windows), then derive a commuting distance dis-
tribution in the mesh space. Figure 6 summarizes the
extracted commuting patterns for the selected subre-
gion.

To address the distinction between parameter cal-
ibration and model validation, we temporally split
the 75-day YJMob dataset into two disjoint subsets:
a calibration set (days 0–48, approximately 7 weeks)
used exclusively for parameter tuning, and a held-
out validation set (days 49–74, approximately 3–4
weeks) reserved for out-of-sample evaluation. We
identified the weekly periodicity in the data and re-
stricted home/work inference to weekday records only
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to avoid weekend mobility patterns confounding the
commute signal.

On the calibration set, we extracted 5,422 com-
muters with a mean commute distance of 6.41 km
(median 3.81 km). We calibrated the gravity model’s
friction parameter β by performing a parameter
sweep and selecting the configuration that minimizes
the Kolmogorov-Smirnov (KS) statistic between the
synthetic and observed commute distance distribu-
tions. The optimal parameter was found to be β =
0.5.

To validate this calibrated model, we evaluated
against the held-out validation set, which contains
4,412 commuters with a mean commute distance
of 5.98 km (median 3.50 km). Importantly, the
calibration and validation sets show strong tempo-
ral consistency (KS = 0.032), confirming they are
drawn from the same underlying distribution. Un-
der the calibrated configuration, the synthetic popu-
lation (90,394 employed individuals, mean commute
7.16 km, median 5.87 km) achieves a KS statistic
of 0.162 against the held-out validation set and a
Wasserstein distance of 1.60 km. This out-of-sample
evaluation provides a stricter assessment than using
the same data for both calibration and validation.

Figure A4 compares the resulting distributions.
We treat this comparison as a commuting-distance
diagnostic rather than a strict OD-flow correlation,
because the observed mesh space is anonymized and
requires manual registration.

Figure 6: Commuting pattern extraction from YJ-
Mob100K after registering the anonymized mesh grid
to our study area. The figure visualizes inferred
home/work points and commuting distance statistics
for the extracted subregion.

Figure 7: Commuting distance distributions under
building-level grounding versus a tract-centroid base-
line. The baseline collapses within-tract heterogene-
ity by placing all households at tract centroids, il-
lustrating how coarse spatial grounding can distort
short-range commuting structure even when work-
place assignments are held fixed.

6 Platform Architecture

GenWorld emphasizes modularity (independent
components for flexibility), scalability (efficient han-
dling of 200,000+ agents in our reference instan-
tiation), and accessibility (LLM-compatible inter-
faces for AI researchers). Figure 8 illustrates the de-
tailed system architecture. Platform UI screenshots
(Streamlit-based interface) are provided in Appendix
Figure A5.

6.1 System Overview

The platform is organized into three layers:

Layer 1: Population and Environment Foun-
dation Instantiates the georeferenced urban world
and synthetic population under census constraints
and reports validation diagnostics; see Section 5.

Layer 2: Agent Decision Framework Ex-
poses a structured agent–environment interface with
binned observations and finite JSON-validated action
candidates, enabling rule-based, teacher-LLM, and
distilled-student policies; see Sections 3 and 4.

Layer 3: Simulation Engine Orchestrates time-
stepped multi-agent execution with feasibility checks,
system-level consistency updates, and detailed log-
ging; see Section 6.2.

The following subsections detail the simulation en-
gine.

6.2 Simulation Engine

The simulation engine orchestrates time-stepped
multi-agent execution, managing time progression,
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Figure 8: GenWorld System Architecture. The platform is organized into three layers: Population & Envi-
ronment Foundation, Agent Decision Framework, and Simulation Engine. The architecture supports LLM
integration and knowledge distillation for city-scale scalability.

spatial dynamics, and system-level feasibility con-
straints. The engine is designed to support both
small-scale LLM experiments and large-scale distilled
simulations.

Time-stepped Execution (Pseudo-code) The
simulator advances in discrete time steps (typically
15-minute intervals) and executes validated actions
under feasibility constraints, while recording struc-
tured decision traces for analysis and offline compila-
tion.

This modular architecture supports repeatability
through deterministic execution and configuration-
based parameters, while enabling extensibility for
new agent models, additional cities, and integration
with external frameworks.

7 Results and Applications

7.1 Current Demonstrations

We demonstrate GenWorld’s capabilities through
baseline simulations and scalability tests in Higashihi-
roshima.

Algorithm 1 Time-stepped simulation engine with
structured decision interface

1: for each simulation step t do
2: determine active agents St from schedules
3: for each agent i ∈ St do
4: construct context ci,t from world state and

persona
5: õi,t ← ϕ(ci,t; qt) ▷ binned observation
6: Ai,t ← κ(qt, õi,t) ▷ finite candidates
7: ai,t ← π(õi,t,Ai,t) ▷ rule/teacher/student
8: if v(õi,t, ai,t) = 0 then
9: ai,t ← f(õi,t) ▷ deterministic fallback

10: end if
11: execute ai,t and update agent/world states
12: append decision record and trajectory log
13: end for
14: apply system-level consistency updates (e.g.,

travel-time feedback and POI capacity)
15: record aggregate metrics (e.g., utilization and

travel-time indicators)
16: end for
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7.1.1 Baseline Simulation

Our baseline simulation includes 196,608 agents
(190,000 residents) distributed across 90,093 house-
holds in Higashihiroshima, with building-level home
assignment, home/school/work anchors, and daily
activity schedules executed under the structured in-
terface.
We visualize the spatial distribution of agents and

their daily commuting flows. The 3D visualization
supports qualitative inspection of residential den-
sity gradients, commuting corridors, activity hotspots
around commercial and institutional areas, and day–
night population shifts. Figure 9 shows two snapshots
of the visualized resident locations: during worktime
the distribution exhibits strong clustering around ac-
tivity centers (e.g., the Hiroshima University area),
while at nighttime these daytime hotspots become
sparse as residents return to their home neighbor-
hoods.
Additional weekday spatial heatmaps for represen-

tative activity types (shopping, socializing, and child-
care) at multiple time windows are provided in the
appendix (Figure A6).
We also summarize the city-scale diurnal rhythm

by aggregating simulated activity occupancy over
time. Figure 10 visualizes the 24-hour distribution
of activity categories as a radial stacked plot, provid-
ing a compact view of time-of-day regularities in the
baseline rollout.
We further visualize aggregate road-network traf-

fic flow by routing simulated trips between consecu-
tive activity locations. Figure 11 shows the all-day
flow map computed from a 50,000-resident sample,
where edge color intensity indicates higher accumu-
lated volumes. Note that this is a static shortest-path
visualization without dynamic congestion feedback;
validating against real-time traffic counts and incor-
porating equilibrium assignment are left for future
work.

7.1.2 Scalability Analysis

Through offline compilation, simulation-time
decision-making can be implemented as amor-
tized constant-time table lookup and sampling
under bounded candidate sets. The computational
complexity comparison is as follows:

• Online LLM: O(N · T · CLLM) per simulated
day, where N is agent count, T is decision steps
per day, and CLLM is per-query LLM inference
cost (typically 0.5–2s for local 7B models).

• Distilled policy: O(N · T · Clookup), where

(a) Worktime resident-location heatmap.

(b) Nighttime resident-location heatmap.

Figure 9: Day–night contrast of visualized resident
locations in the baseline rollout. The worktime snap-
shot highlights dense daytime clustering around ma-
jor institutional and employment centers (e.g., the
Hiroshima University area), whereas the nighttime
snapshot shows these areas becoming nearly empty as
the population shifts back toward residential neigh-
borhoods.
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Figure 10: 24-hour activity occupancy distribution
in the baseline rollout, shown as a radial stacked
plot (outer radius indicates more people). The vi-
sualization highlights the expected day–night cycle:
home/sleep dominates overnight, work and study in-
crease during daytime hours, and leisure and other
discretionary activities rise in the evening.

Figure 11: All-day road-network traffic flow aggre-
gated from a 50,000-resident sample. Trips are routed
via static shortest paths (no congestion feedback);
edge intensity indicates accumulated volume. This
is intended as a visualization of spatial demand pat-
terns rather than a validated traffic simulation.

Clookup ≈ 1µs (hash table lookup + categorical
sampling).

For N = 200,000 agents with T = 96 decision
points per day (15-minute steps), online LLM simula-
tion would require∼19M inference calls per simulated
day, which is computationally expensive in practice.
Our distilled policy replaces these calls with table
lookups, allowing city-scale rollout in our reference
setup.

In a micro-test, Python lookup achieves 1.85M
queries/s (0.54µs per query) over 200,000 random-
ized context keys on an Intel Core i5-14600K CPU.
End-to-end wall-clock time per simulator step also in-
cludes environment updates, spatial queries, and ac-
tivity execution; profiling under varying agent counts
is ongoing work.

7.2 Summary

Our results demonstrate that GenWorld combines
empirically grounded world instantiation, a struc-
tured agent interface, and scalable simulation-time
rollout via offline compilation. While current valida-
tion focuses on census consistency and mobility-scale
diagnostics, broader validation and calibrated policy
evaluation would require additional datasets and is
left for future work.

8 Discussion

Limitations and Future Work Several limita-
tions remain in the current reference instantiation.

Validation Scope We validate synthetic popu-
lations against census tabulations, commuting dis-
tances against YJMob100K mobile phone data, and
activity schedules against the Japanese National
Time Use Survey (e-Stat). Our activity schedule
validation shows good agreement for diurnal pat-
terns (average correlation r > 0.86, RMSE < 3%),
though peak-time shifts for work/study activities sug-
gest lunch-break modeling needs refinement. Broader
validation, such as link-level traffic counts and full
OD-flow correlation, would require additional cali-
brated datasets and is left for future work.

Distillation Fidelity Our distillation pipeline ag-
gregates teacher-model responses into lookup tables,
but the fidelity of this compilation is not fully vali-
dated. We use K = 10–30 samples per context key
with a single teacher model (Gemma 3 27B); ablation
of sampling count, temperature, and teacher model
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choice is needed. We also do not quantitatively com-
pare distilled outputs against fresh teacher queries
(e.g., via KL divergence or decision agreement rate).

Behavioral Modeling The structured interface
enables logging and analysis of LLM-driven decisions,
but connecting these to human decision processes is
not addressed here. Possible extensions include com-
parisons against human subjects or stated-preference
surveys, sensitivity analyses of prompt design, and
evaluation of emergent behaviors under scenario per-
turbations.

Generalizability The current implementation
is instantiated in Higashihiroshima, a mid-sized
Japanese city with approximately 200,000 residents.
Higashihiroshima has a relatively dispersed urban
form centered around Hiroshima University; scalabil-
ity to denser metropolitan areas (Tokyo, Osaka) with
more complex transit networks remains untested,
and computational challenges may arise at 10×
population scales.
Our data pipeline relies on Japan-specific sources

(e-Stat census, YJMob100K mobility, Hiroshima
DoBOX land use). Replication elsewhere requires
equivalent data sources and adapted preprocessing;
availability and format consistency vary across re-
gions. Activity patterns and commuting behav-
iors also differ across urban contexts—US suburban
sprawl, European compact cities, and Asian high-
density development each have distinct characteris-
tics. The distilled decision distributions may not
transfer without local calibration.

Potential Application Scenarios Although the
results reported in this paper focus on empiri-
cal grounding and scalable rollout, the same in-
stantiation and structured decision traces also sup-
port qualitative what-if analyses. Example use
cases include transportation planning (inspecting
commuting-pattern shifts under hypothetical transit
or land-use changes), disaster response and resilience
(elevation-aware exposure inspection and evacuation
accessibility under flood scenarios), and urban pol-
icy evaluation (routine or constraint modifications
such as remote-work adoption and capacity policies).
These scenarios are intended as illustrative demon-
strations rather than calibrated forecasts.

9 Conclusion

GenWorld is an LLM-ready urban simulation plat-
form that couples empirically grounded population-

and-environment instantiation with a structured
agent interface and scalable rollout. A reference in-
stantiation in Higashihiroshima demonstrates end-
to-end feasibility for deploying and studying LLM-
driven agents in realistic urban settings.

GenWorld contributes an empirically grounded,
building-level urban world together with a structured
agent interface that yields machine-readable decision
traces. The interface uses query-conditioned, binned
observations and finite JSON-validated action can-
didates, enabling rule-based policies, teacher-LLM
decision traces, and compiled student policies for
scalable simulation-time inference. Current valida-
tion focuses on census consistency and anonymized
mobile-phone mobility diagnostics; broader valida-
tion against additional datasets is left for future
work. Code, configurations, and documentation will
be released as open-source software upon publica-
tion, following the principles of reproducible urban
research [7].
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A Supplementary Materials

A.1 Additional Figures

A.2 Data Sources

Figure A1: Census data summary showing age-
gender-occupation distributions across the finest-
resolution census units (level 2 + level 4) in Higashihi-
roshima. The tabulations are used as a reference
for evaluating demographic accuracy of the synthetic
population.

Figure A2: School enrollment distribution across 85
schools in Higashihiroshima, showing the number of
students assigned to each educational level. The dis-
tribution is consistent with official enrollment statis-
tics.
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Table 2: Data sources used to instantiate and validate GenWorld in Higashihiroshima. Access column
indicates availability: Open = publicly available for automatic download; Reg = requires free registration;
NR = non-redistributable (requires user to obtain from original source).

Data Type Source Access Description

Census Data e-Stat Open Age-gender, household, occupation statistics (198 census
units)

Time Use Survey e-Stat Open National time-use survey tabulations for activity distribu-
tions

Admin Bound-
aries

e-Stat Open Census tract boundaries for spatial aggregation

Buildings OpenStreetMap Open Building footprints with height and area (45,000+ buildings)

POI Data OpenStreetMap Open Points of interest (57,000 POIs)

Manufacturing
POIs

Hiroshima High-
Tech Assoc.

NR Company locations and employee counts (215 facilities)

Land Use Hiroshima
DoBOX

Reg Parcel-level land use classification

Elevation GSI FGD
DEM1A

Reg 1m-mesh digital elevation model

Road Network OpenStreetMap Open Road network with hierarchy (15,861 nodes)

School Districts e-Stat Open School district boundaries (85 schools)

Mobile Phone
Data

YJMob100K [40] NR Aggregated commuting patterns for validation

Figure A3: Example of YJMob100K data show-
ing aggregated commuting flows after registering the
anonymized mesh grid to our Higashihiroshima study
area. The data provides mesh-level origin-destination
patterns derived from anonymized mobile phone GPS
trajectories, and is used as an external mobility ref-
erence.

Figure A4: Commute distance distribution compari-
son between the synthetic population and YJM data,
used as a diagnostic for commuting-distance scale.
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(a) Simulation dashboard and real-time activity
statistics in the Streamlit-based UI.

(b) Interactive building-level map view for inspect-
ing the instantiated urban world (e.g., land use and
assigned households). Residential buildings are ren-
dered in red with color intensity proportional to res-
ident counts (darker indicates more residents).

Figure A5: Platform UI screenshots of GenWorld, implemented with Streamlit for interactive inspection and
monitoring of the simulation and instantiated urban world.

Figure A6: Weekday spatial heatmaps for three representative activity types (shopping, socializing, and
childcare) at five time windows. Each row corresponds to an activity type and each column corresponds to
a time window; color intensity indicates higher occupancy.
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A.3 Intention and Activity-Type Tax-
onomy

Activity Type Vocabulary We use a small,
discrete activity-template vocabulary (configured
in data_prepare/step4_llm_distill/bins_

activity_preference.json) in our reference
instantiation:

sleep_rest, work_task, study_class, daily_shopping,

personal_service, solo_meal, social_meal,

medical_care, admin_errand, social_visit,

entertainment_activity, structured_exercise,

casual_walk, outdoor_leisure

↪→

↪→

↪→

↪→

Distillation Candidate Sets The same
configuration file specifies the intention set
I = {home, duty, leisure, maintenance},
weekday/weekend intention-chain candi-
dates (with_duty_intention_chain and
without_duty_intention_chain), and the
legal mappings activity→intention and
activity→landuse. These candidate sets de-
fine the finite action space used by offline distillation
and simulation-time lookup.
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Table 3: Reference intention set and allowed activity types used in our instantiation. For each intention
z ∈ I, the teacher scores the predefined candidate set Az and we normalize the aggregated scores into a
categorical distribution for simulation-time sampling.

Intention z Semantics Allowed activity types Az

home Stay at residence / rest sleep_rest

duty Obligations (work/school) work_task,study_class

maintenance Daily necessities and errands daily_shopping,personal_service,medical_care,admin_

errand

leisure Discretionary activities solo_meal,social_meal,social_visit,entertainment_

activity,structured_exercise,casual_walk,outdoor_

leisure

A.4 Distillation Prompt Templates

Below are representative prompt templates for offline
distillation. Each query type uses a fixed template
that includes resident profile fields and outputs struc-
tured JSON scores.

Chain Scores Prompt

Role-play as a resident and score behavior preferences.

Resident: age_bin=<age>, occupation=<occ>

Scenario: typical <day_type>

Candidates: [<chain_1>, <chain_2>, ...]

(H=home, D=duty, L=leisure, M=maintenance)

Task: Score each chain [0-10]. Output JSON only:

{"scores": {"<chain_1>": 5, "<chain_2>": 5}}

Activity Scores Prompt

Role-play as a resident and score activity preferences.

Resident: age_bin=<age>, occupation=<occ>

Scenario: pursuing intention='<intention>'

Candidates: [<activity_1>, <activity_2>, ...]

Task: Score each activity [0-10]. Output JSON only:

{"scores": {"<activity_1>": 5, "<activity_2>": 5}}

Full templates and configuration
files are available in the repository at
data prepare/step4 llm distill/.

A.5 LLM Interface Schema

This section provides detailed repeatability notes
for the LLM-ready interface, including discretization
bins, activity–landuse mappings, and missing value
handling.

Context Discretization Bins Agent context is
discretized into coarse bins to enable efficient lookup-
table compilation:

• Age bins (3 categories): child (0–17), adult
(18–64), elderly (65+)

• Occupation bins (9 categories):
agriculture worker, industrial worker,
service worker, office worker,
professional, public sector, self employed,
non employed, college student

• Day type (2 categories): weekday, weekend

Activity–Intention Mapping Each activity type
maps to exactly one intention category:

Activity Intention

sleep rest home

work task, study class duty

daily shopping,

personal service,

medical care, admin errand

maint.

solo meal, social meal,

social visit,

entertainment activity,

structured exercise,

casual walk, outdoor leisure

leisure

Activity–Landuse Mapping Each activity
type is constrained to specific landuse categories
(abbreviations: C=commercial, I=industrial,
P=public facility, T=transport, O=open space,
R=residential, A=agriculture, N=nature):

Activity Landuse

sleep rest R
work task C, I, P, T, O, A
study class P
daily shopping, personal service C
medical care, admin errand P
solo meal C, P, T, O
social meal, entertainment C, O
social visit R, O
structured exercise O, P
casual walk O, road
outdoor leisure O, N
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Missing Value Handling When agent attributes
are incomplete, the following defaults apply:

• Missing occupation: Mapped to
non employed bin

• Missing age: Mapped to adult bin (modal cat-
egory)

• Missing home location: Agent excluded
from spatial activity generation; flagged as
no location

• No valid POI for activity: Fallback to near-
est POI of any compatible landuse type; if none
available within search radius, activity skipped

The complete schema files are
available in the repository at
data prepare/step4 llm distill/bins *.json.

A.6 Distillation Setup

We perform offline distillation by repeatedly querying
a teacher model under identical discretized context
keys s (Section 4) and estimating empirical action dis-
tributions for each decision query type. Prompt tem-
plates used for distillation are listed in Appendix A.4.

Sampling Hyperparameters In our reference in-
stantiation, we use the following configuration:

• Repetitions per context key (K): 10 samples
per unique (age bin, occupation bin, day type)
tuple

• Teacher model: Gemma 3 27B [36] served lo-
cally via Ollama

• Temperature: 0.7 for score generation (en-
abling diverse but coherent responses)

• Sampling: No adaptive sampling; uniform K
across all context keys

Hardware Distillation was performed on a work-
station equipped with an RTX 4090 GPU (24GB
VRAM), 96GB RAM, and an Intel Core i5-14600K
CPU. The teacher model was queried through
AgentScope [10].

Unseen Key Handling At simulation time, if a
context key s was not encountered during distillation
(due to rare demographic combinations), we apply a
fallback strategy:

1. Coarse-bin fallback: Map the unseen key
to a coarser bin (e.g., specific occupation →
non employed)

2. Default distribution: If no matching compiled
distribution exists, use a uniform distribution
over the candidate action set

In practice, our discretization yields 3 × 9 × 2 = 54
unique context keys for activity preference queries,
which are enumerated during offline compilation.
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